Noncommutative Symmetric Functions and the Inversion Problem

نویسنده

  • Wenhua Zhao
چکیده

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Consequently, we get a Hopf algebra homomorphism SFt : NSym → D〈〈z〉〉 from the Hopf algebra NSym ([GKLLRT]) of NCSF’s (noncommutative symmetric functions). In this paper, we first give a list for the identities between any two sequences of differential operators in the NCS system ΩFt by using some identities of NCSF’s derived in [GKLLRT] and the homomorphism SFt . Secondly, we apply these identities to derive some formulas in terms of differential operator in the system ΩFt for the Taylor series expansions of u(Ft) and u(F −1 t ) (u(z) ∈ K[[t]]〈〈z〉〉); the D-Log and the formal flow of Ft and inversion formulas for the inverse map of Ft. Finally, we discuss a connection of the wellknown Jacobian conjecture with NCSF’s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Symmtric Functions and the Inversion Problem

Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...

متن کامل

Noncommutative Symmetric Systems over Associative Algebras

This paper is the first of a sequence papers ([Z4]–[Z7]) on the NCS (noncommutative symmetric) systems over differential operator algebras in commutative or noncommutative variables ([Z4]); the NCS systems over the Grossman-Larson Hopf algebras ([GL], [F]) of labeled rooted trees ([Z6]); as well as their connections and applications to the inversion problem ([BCW], [E4]) and specializations of ...

متن کامل

Quasideterminants, I

Introduction A notion of quasideterminants for matrices over a noncommutative skew-field was introduced in [GR], [GR1], [GR2]. It proved its effectiveness for many areas including noncommutative symmetric functions [GKLLRT], noncommutative The main property of quasideterminants is a " heredity principle " : let A be a square matrix over a skew-field and (A ij) be its block decomposition into su...

متن کامل

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jia Huang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

We study combinatorial aspects of the representation theory of the 0-Hecke algebra Hn(0), a deformation of the group algebra of the symmetric group Sn. We study the action of Hn(0) on the polynomial ring in n variables. We show that the coinvariant algebra of this action naturally carries the regular representation of Hn(0), giving an analogue of the well-known result for the symmetric group by...

متن کامل

Noncommutative irreducible characters of the symmetric group and noncommutative Schur functions

In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAC

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008